Modeling Neurovascular Coupling from Clustered Parameter Sets for Multimodal EEG-NIRS
نویسندگان
چکیده
Despite significant improvements in neuroimaging technologies and analysis methods, the fundamental relationship between local changes in cerebral hemodynamics and the underlying neural activity remains largely unknown. In this study, a data driven approach is proposed for modeling this neurovascular coupling relationship from simultaneously acquired electroencephalographic (EEG) and near-infrared spectroscopic (NIRS) data. The approach uses gamma transfer functions to map EEG spectral envelopes that reflect time-varying power variations in neural rhythms to hemodynamics measured with NIRS during median nerve stimulation. The approach is evaluated first with simulated EEG-NIRS data and then by applying the method to experimental EEG-NIRS data measured from 3 human subjects. Results from the experimental data indicate that the neurovascular coupling relationship can be modeled using multiple sets of gamma transfer functions. By applying cluster analysis, statistically significant parameter sets were found to predict NIRS hemodynamics from EEG spectral envelopes. All subjects were found to have significant clustered parameters (P < 0.05) for EEG-NIRS data fitted using gamma transfer functions. These results suggest that the use of gamma transfer functions followed by cluster analysis of the resulting parameter sets may provide insights into neurovascular coupling in human neuroimaging data.
منابع مشابه
Multimodal integration of fMRI, EEG, and NIRS
Multimodal integration in the field of human brain mapping has evolved from structural-functional co-registrations toward functional-functional combinations. This paper briefly reviews fMRI-EEG, fMRI-NIRS, EEG-NIRS, and fMRI-EEG-NIRS combinations. OCIS codes: Inverse problems (100.3190); Functional monitoring and imaging (170.2655); Medical and biological imaging (170.3880); Physiology (170.538...
متن کاملCorrespondence of electroencephalography and near-infrared spectroscopy sensitivities to the cerebral cortex using a high-density layout.
This study investigates the correspondence of the cortical sensitivity of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). EEG forward model sensitivity to the cerebral cortex was calculated for 329 EEG electrodes following the 10-5 EEG positioning system using a segmented structural magnetic resonance imaging scan of a human subject. NIRS forward model sensitivity was calcul...
متن کاملBidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS
Transcranial direct current stimulation (tDCS) has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG). Respective neural activity (energy demand) has been shown to be closely related, s...
متن کاملComputational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses—An Application in Ischemic Stroke
Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are se...
متن کاملNIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.
BACKGROUND Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015